
Reviewing Primitive
Procedures

We spent most of Tuesday's class working on primitive procedures.
We particularly focused on arithmetic procedures, but the lab also asks
you to implement some list procedures.

Question: What does * parse to?

A. '*
B. ('var-ref *)
C. ('prim-proc *)
D. parsing * gives an error

Answer B: ('var-ref *) * is a symbol; like all symbols it parses to a
var-ref.

Question: What does * evaluate to?

A. '*
B. ('var-ref *)
C. ('prim-proc *)
D. An error

Answer C: (prim-proc *) We set up the environment to bind all
primitive procedures to prim-proc versions of themselves. That's how
we can tell what kind of critter a function is: we evaluate it. Primitive
procedures evaluate to prim-procs, lambda expressions evaluate to
closures.

Question: What does (* 4 5) parse to?

A. 20
B. ('lit-exp 20)
C. ('app-exp ('var-ref *) (('lit-exp 4) ('lit-exp 5)))
D. ('app-exp ('prim-proc *) (('lit-exp 4) ('lit-exp 5)))

Answer C: ('app-exp ('var-ref *) (('lit-exp 4) ('lit-exp 5)))

We parse an application by building an app-exp with two fields. The
first field is the parsed procedure; the second field is the list of
parsed arguments.

What does (* 4 5) evaluate to?

A. 20
B. ('lit-exp 20)
C. ('app-exp * (4 5))
D. An error

If this makes any sense at all, (* 4 5) had better evaluate to 20.

How does that happen?

1. (* 4 5) parses to ('app-exp ('var-ref *) (('lit-exp 4) ('lit-exp 5)))
2. That evaluates to (apply-proc ('prim-proc *) (4 5))
3. That evaluates to (apply-primitive-op * (4 5))
4. That evaluates to 20.

Question: What does (list 3 5 2) parse to?

Answer: (app-exp ('var-ref 'list) (('lit-exp 3) ('list-exp 5) ('lit-exp 2)))

OK; how is that evaluated?

Answer: We call
(apply-proc ('prim-proc 'list) (3 5 2))

which calls

(apply-primitive-op 'list (3 5 2))

which ought to evaluate to (3 5 2)

We said that function (apply-primitive-op p args) has the following line
for +

[(eq? p '+) (+ (car args) (cadr args))]

What is the corresponding line for list?

[(eq? p 'list) ????]

Answer: [(eq? p 'list) args]

Just one more of these. The MiniScheme function first is just like car;
it gives the first element of its argument, which should be a list. How
do we parse the expression '(first (list 3 5 2)) ??

('app-exp (var-ref first) (('app-exp ('var-ref list) ((lit-exp 3) (lit-exp 5)
(lit-exp 2)))))

How does that get evaluated?

(apply-proc (prim-proc 'first) (foo))
where foo is the value of the inner app-exp; we've already seen that
this evaluates to (3 5 2)
So we do (apply-proc (prim-proc 'first) ((3 5 2)))

(apply-proc (prim-proc 'first) ((3 5 2))) calls
(apply-primitive-op 'first ((3 5 2)))

What is the line of (apply-primitive-op p args) for first?

[(eq? p 'first) (car (car args))]

Note that the quote operator ' is not part of MiniScheme.
(first (list 1 2 3)) is a valid MiniScheme expression but
(first '(1 2 3)) is not.

